Exercise 4

A particle moves according to a law of motion $s=f(t), t \geq 0$, where t is measured in seconds and s in feet.
(a) Find the velocity at time t.
(b) What is the velocity after 1 second?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled during the first 6 seconds.
(f) Draw a diagram like Figure 2 to illustrate the motion of the particle.
(g) Find the acceleration at time t and after 1 second.
(h) Graph the position, velocity, and acceleration functions for $0 \leq t \leq 6$.
(i) When is the particle speeding up? When is it slowing down?

$$
f(t)=t^{2} e^{-t}
$$

Solution

Part (a)

To find the velocity, take the derivative of the position function.

$$
\begin{aligned}
v(t) & =\frac{d s}{d t} \\
& =\frac{d}{d t}\left(t^{2} e^{-t}\right) \\
& =\left[\frac{d}{d t}\left(t^{2}\right)\right] e^{-t}+t^{2}\left[\frac{d}{d t}\left(e^{-t}\right)\right] \\
& =(2 t) e^{-t}+t^{2}\left[e^{-t} \cdot \frac{d}{d t}(-t)\right] \\
& =2 t e^{-t}+t^{2}\left[e^{-t} \cdot(-1)\right] \\
& =t e^{-t}(2-t)
\end{aligned}
$$

Part (b)

The velocity after 1 second has elapsed is

$$
v(1)=(1) e^{-1}(2-1)=\frac{1}{e} \frac{\text { feet }}{\text { second }} .
$$

Part (c)

To find when the particle is at rest, set the velocity function equal to zero and solve the equation for t.

$$
\begin{gathered}
v(t)=0 \\
t e^{-t}(2-t)=0 \\
t(2-t)=0 \\
t=0 \quad \text { or } \quad 2-t=0 \\
t=\{0,2\}
\end{gathered}
$$

The particle is at rest when $t=0$ and $t=2$.
Part (d)

To find when the particle is moving in the positive direction, find what values of t satisfy $v(t)>0$.

$$
\begin{gathered}
v(t)>0 \\
t e^{-t}(2-t)>0 \\
t(2-t)>0
\end{gathered}
$$

The critical values are 0 and 2. Partition the number line at these points and test whether the inequality is true within each interval.

Therefore, the particle is moving in the positive direction for $0<t<2$.

Part (e)

The distance travelled in $0 \leq t<2$ is

$$
|s(2)-s(0)|=\left|(2)^{2} e^{-2}-(0)^{2} e^{-0}\right|=\frac{4}{e^{2}}
$$

and the distance travelled in $2<t \leq 6$ is

$$
|s(6)-s(2)|=\left|(6)^{2} e^{-6}-(2)^{2} e^{-2}\right|=\frac{4}{e^{2}}-\frac{36}{e^{6}}
$$

Consequently, the total distance travelled in $0 \leq t \leq 6$ is $\frac{4}{e^{2}}+\frac{4}{e^{2}}-\frac{36}{e^{6}}=\frac{8}{e^{2}}-\frac{36}{e^{6}}$ feet.

$\underline{\text { Part (f) }}$

Below is an illustration of the particle's motion from $t=0$ to $t=6$.

$$
t=6
$$

Part (g)

Calculate the derivative of the velocity to get the acceleration.

$$
\begin{aligned}
a(t) & =\frac{d v}{d t} \\
& =\frac{d}{d t}\left[t e^{-t}(2-t)\right] \\
& =\frac{d}{d t}\left[e^{-t}\left(2 t-t^{2}\right)\right] \\
& =\left[\frac{d}{d t}\left(e^{-t}\right)\right]\left(2 t-t^{2}\right)+e^{-t}\left[\frac{d}{d t}\left(2 t-t^{2}\right)\right] \\
& =\left[e^{-t} \cdot \frac{d}{d t}(-t)\right]\left(2 t-t^{2}\right)+e^{-t}(2-2 t) \\
& =\left[e^{-t} \cdot(-1)\right]\left(2 t-t^{2}\right)+e^{-t}(2-2 t) \\
& =e^{-t}\left(t^{2}-4 t+2\right)
\end{aligned}
$$

The acceleration after 1 second is

$$
a(1)=e^{-1}\left[1^{2}-4(1)+2\right]=-\frac{1}{e} \frac{\text { feet }}{\text { second }^{2}} .
$$

Part (h)

Below is a plot of the position, velocity, and acceleration versus time for $0 \leq t \leq 6$.

Part (i)

The particle is speeding up when

$$
\begin{gather*}
e^{-t}\left(t^{2}-4 t+2\right)>0 \\
t^{2}-4 t+2>0 \tag{1}
\end{gather*}
$$

In order to factor this polynomial, solve the corresponding equation:

$$
\begin{gathered}
t^{2}-4 t+2=0 \\
t=\frac{4 \pm \sqrt{16-4(2)}}{2} \\
t=\frac{4 \pm \sqrt{8}}{2} \\
t=2 \pm \sqrt{2} .
\end{gathered}
$$

As a result, (1) becomes

$$
[t-(2+\sqrt{2})][t-(2-\sqrt{2})]>0
$$

The critical values are $2-\sqrt{2}$ and $2+\sqrt{2}$.

Partition the number line at these points and test whether the inequality is true within each interval.

Consequently, the particle is speeding up when $0<t<2-\sqrt{2}$ or $2+\sqrt{2}<t<6$. The particle is slowing down when

$$
\begin{gathered}
e^{-t}\left(t^{2}-4 t+2\right)<0 \\
t^{2}-4 t+2<0 \\
{[t-(2+\sqrt{2})][t-(2-\sqrt{2})]<0}
\end{gathered}
$$

The critical values are $2-\sqrt{2}$ and $2+\sqrt{2}$. Partition the number line at these points and test whether the inequality is true within each interval.

Consequently, the particle is slowing down when $2-\sqrt{2}<t<2+\sqrt{2}$.

